skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yu, Huaizhe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Computational methods can provide first-principles insights into the thermochemistry and kinetics of reactions at interfaces, but this capability has not been widely leveraged to design soft materials that respond selectively to chemical species. Here we address this opportunity by demonstrating the design of micrometer-thick liquid crystalline films supported on metal-perchlorate surfaces that exhibit selective orientational responses to targeted oxidizing gases. Initial electronic structure calculations predicted Mn 2+ , Co 2+ , and Ni 2+ to be promising candidate surface binding sites that (1) coordinate with nitrile-containing mesogens to orient liquid crystal (LC) phases and (2) undergo redox-triggered reactions upon exposure to humid O 3 leading to a change in the strength of binding of the nitrile group to the surface. These initial predictions were validated by experimental observations of orientational transitions of nitrile-containing LCs upon exposure to air containing parts-per-billion concentrations of O 3 . Additional first-principles calculations of reaction free energies of metal salts and oxidizing gases predicted that the same set of metal cations, if patterned on surfaces at distinct spatial locations, would provide LC responses that allow Cl 2 and O 3 to be distinguished while not responding to environmental oxidants such as O 2 and NO 2 . Experimental results are provided to support this prediction, and X-ray diffraction measurements confirmed that the experimentally observed LC responses can be understood in terms of the relative thermodynamic driving force for formation of MnO 2 , CoOOH, or NiOOH from the corresponding metal cation binding sites in the presence of humid O 3 and Cl 2 . 
    more » « less
  2. null (Ed.)
    The development of responsive soft materials with tailored functional properties based on the chemical reactivity of atomically precise inorganic interfaces has not been widely explored. In this communication, guided by first-principles calculations, we design bimetallic surfaces comprised of atomically thin Pd layers deposited onto Au that anchor nematic liquid crystalline phases of 4′- n -pentyl-4-biphenylcarbonitrile (5CB) and demonstrate that the chemical reactivity of these bimetallic surfaces towards Cl 2 gas can be tuned by specification of the composition of the surface alloy. Specifically, we use underpotential deposition to prepare submonolayer to multilayers of Pd on Au and employ X-ray photoelectron and infrared spectroscopy to validate computational predictions that binding of 5CB depends strongly on the Pd coverage, with ∼0.1 monolayer (ML) of Pd sufficient to cause the liquid crystal (LC) to adopt a perpendicular binding mode. Computed heats of dissociative adsorption of Cl 2 on PdAu alloy surfaces predict displacement of 5CB from these surfaces, a result that is also confirmed by experiments revealing that 1 ppm Cl 2 triggers orientational transitions of 5CB. By decreasing the coverage of Pd on Au from 1.8 ± 0.2 ML to 0.09 ± 0.02 ML, the dynamic response of 5CB to 1 ppm Cl 2 is accelerated 3X. Overall, these results demonstrate the promise of hybrid designs of responsive materials based on atomically precise interfaces formed between hard bimetallic surfaces and soft matter. 
    more » « less
  3. null (Ed.)
    Soft matter that undergoes programmed macroscopic responses to molecular analytes has potential utility in a range of health and safety-related contexts. In this study, we report the design of a nematic liquid crystal (LC) composition that forms through dimerization of carboxylic acids and responds to the presence of vapors of organoamines by undergoing a visually distinct phase transition to an isotropic phase. Specifically, we screened mixtures of two carboxylic acids, 4-butylbenzoic acid and trans-4-pentylcyclohexanecarboxylic acid, and found select compositions that exhibited a nematic phase from 30.6 to 111.7 °C during heating and 110.6 to 3.1 °C during cooling. The metastable nematic phase formed at ambient temperatures was found to be long-lived (>5 days), thus enabling the use of the LC as a chemoresponsive optical material. By comparing experimental infrared (IR) spectra of the LC phase with vibrational frequencies calculated using density functional theory (DFT), we show that it is possible to distinguish between the presence of monomers, homodimers and heterodimers in the mixture, leading us to conclude that a one-to-one heterodimer is the dominant species within this LC composition. Further support for this conclusion is obtained by using differential scanning calorimetry. Exposure of the LC to 12 ppm triethylamine (TEA) triggers a phase transition to an isotropic phase, which we show by IR spectroscopy to be driven by an acid-base reaction, leading to the formation of ammonium carboxylate salts. We characterized the dynamics of the phase transition and found that it proceeds via a characteristic spatiotemporal pathway involving the nucleation, growth, and coalescence of isotropic domains, thus amplifying the atomic-scale acid-base reaction into an information-rich optical output. In contrast to TEA, we determined via both experiment and computation that neither hydrogen bonding donor or acceptor molecules, such as water, dimethyl methylphosphonate, ethylene oxide or formaldehyde, disrupt the heterodimers formed in the LC, hinting that the phase transition (including spatial-temporal characteristics of the pathway) induced in this class of hydrogen bonded LC may offer the basis of a facile and chemically selective way of reporting the presence of volatile amines. This proposal is supported by exploratory experiments in which we show that it is possible to trigger a phase transition in the LC by exposure to volatile amines emitted from rotting fish. Overall, these results provide new principles for the design of chemoresponsive soft matter based on hydrogen bonded LCs that may find use as the basis of low-cost visual indicators of chemical environments. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract Microtubules and catalytic motor proteins underlie the microscale actuation of living materials, and they have been used in reconstituted systems to harness chemical energy to drive new states of organization of soft matter (e.g., liquid crystals (LCs)). Such materials, however, are fragile and challenging to translate to technological contexts. Rapid (sub‐second) and reversible changes in the orientations of LCs at room temperature using reactions between gaseous hydrogen and oxygen that are catalyzed by Pd/Au surfaces are reported. Surface chemical analysis and computational chemistry studies confirm that dissociative adsorption of H2on the Pd/Au films reduces preadsorbed O and generates 1 ML of adsorbed H, driving nitrile‐containing LCs from a perpendicular to a planar orientation. Subsequent exposure to O2leads to oxidation of the adsorbed H, reformation of adsorbed O on the Pd/Au surface, and a return of the LC to its initial orientation. The roles of surface composition and reaction kinetics in determining the LC dynamics are described along with a proof‐of‐concept demonstration of microactuation of beads. These results provide fresh ideas for utilizing chemical energy and catalysis to reversibly actuate functional LCs on the microscale. 
    more » « less